
J. A& Maths Mcdrs, Vol. 58, No. 6, pp. 1095-1@‘6,1994 
Cqyrigbt 0 1995 J3lsevier Science Ltd 

Priuted in Great Britain. All rights reserved 
0021-8928(94)00140-5 ooz1m4 $24.00+0.00 

AN ~S~~T~ OF THE RADIUS OF THE VISCOUS 
CORF, OF A VORTEX? 

E. L. AMROMIN 

St Petersburg 

(Received 5 Junuury 1994) 

A formula is derived which relates the radius of a vortex in a viscous fluid to its kinetic energy of husbulencc. 

We shall call the part of a vortex, within which the velocity of rotation of the fluid decreases on appr~~h~g its 
centre, the viscous core. The value of the nominal radius R of a vortex is used both in computational methods [1] 

which operate with discrete vortices and in estimating the dimensions of vortices and cavitation caverns in them 
in the case of the steady flows which are observed in practice [2,3]. However, in such flows, R is a quantity that is 
practically independent of time while the relation between R and the circulation of a vortex r and the kinematic 
viscosity v derived from the Navierstokes equations is time-dependent and does not yield a f&rite limit for R. 

‘lb some extent, a similar situation is also observed in the case of charged particle trajectories which are not 
closed in a constant electric field. However, closed trajectories do exist 151 in a pulsed field. In a real fluid the 
velocity field always has a pulsating part, and the availability of Reynolds equations facilitates the use of the hint 
in [5] that the averaged pulsation characteristics can be considered directly. In simple cases, it is even possible to 
derive analytic expressions for R. 

Let us consider the equation for the aximuthal component of the momen~m in the coordinates (r, 6) of a 

plane which is orthogonal to the axis of the vortex. The Reynolds average of this equation has the form 

If &JiM, dul?#), +/El@ are ne~i~bly small and the turbulence characteristics vary only slightly close to the core, 
then (1) can be simplified to 

Assuming (~‘u~ = con&, the solution of this equation has the form 

The conditions u(O) = 0, u(R) = lY(2xZ?), CAR) = 0 enable us to find the constants Cr, C2, R, and the last of 
these conditions is stomp for the outer boundary of a viscous layer. As a result, we obtain 

R2 = - l-v/x( u’u’ ) (2) 

The above-mentioned assumptions concerning the nature of the turbulence enable us to express (A’) in (2) 
directly in terms of the kinetic energy of turbulence k. Subject to the simplifications used, k = 3(~‘u’} /2. However, 

in the formula 

R-A- (3) 
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the constant A will obviously not differ greatly from 0.69 in the case of real flows in spite of the simplifying 
assumptions made when deriving (3). We have not been able to verify this formula using well-known measure- 
ments since we have not found any experimental data on the values fork for vortices with measured {R, r}, and 

the oscillograms in [6] only enable one to assert that (3) predicts the true order of R. Equation (3) satisfies the 
limiting cases. In the case of a viscous fluid (v + 0) R + 0. When k + 0 for finite v, no time-independent bounded 

R exists as in a laminar flow. In the case of a turbulent boundary layer, the vortices must be larger in this external 

part where k is smaller, which corresponds to observations [7]. 
In conclusion, it should be noted that velocity pulsations and vortices are both attributes of turbulence, and a 

coupling between them is completely natural. 
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